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LETTER TO THE EDITOR

Recurrence and ergodicity breaking in a Hamiltonian toy
model
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Balseiro, 8400 Bariloche, Ŕıo Negro, Argentina
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Abstract. The properties of recurrence and ergodicity breaking in a discrete model that
simulates the generic Hamiltonian motion are studied. These properties are respectively
characterized by the distribution of orbit periods and the division in sectors of phase space.
Despite its simplicity, the model can exhibit an intricate structure and, in fact, is able to mimic
both regular and chaotic evolution. This complexity is also revealed in the appearance of
power-law decays in the period distribution.

Poincaŕe’s recurrence theorem, which states that a bounded Hamiltonian system returns
systematically to an arbitrarily small neighbourhood of its initial condition, is probably the
most general result now available on Hamiltonian dynamics [1]. Unfortunately, the proof
of this theorem fails to predict the time that a given system takes to return close to its initial
state. Except for some very simple cases, there is no general rule to calculate the recurrence
time.

Historically, the recurrence theorem played a fundamental role in the discussion on the
compatibility of the mechanical (microscopic) and statistical (macroscopic) description of
Hamiltonian dynamics. The success of statistical mechanics is indeed grounded on the fact
that, in most of the cases relevant to real systems, the recurrence time is suspected to be
extremely long. The evaluation of this time is therefore closely related to the definition of
the validity range for the statistical mechanics of Hamiltonian systems.

In this letter, the recurrence time of a very simple discrete Hamiltonian model is
calculated—exactly, but by numerical means. The model is a discretized version of the
Ehrenfests’ wind-tree model [2], and simulates a gas whose particles collide against fixed
scattering centres, similar to the Lorentz gas [3]. Despite its simplicity, the dynamics of
this model shares several relevant features with the generic Hamiltonian motion. As a
by-product, ergodicity breaking is also analysed.

The system evolves in discrete unitary time steps on anN ×N square lattice of unitary
spacing. It consists ofP non-interacting particles which occupy the lattice nodes with no
exclusion rule. Each of them moves with unitary speed in one of the four directions defined
by the lattice. A particle preserves its velocity unless it encounters a site with a reflecting
wall. In this case, it deviates to one of the two perpendicular directions. Each wall can
therefore have two different orientations and reflects particles on its two faces.M walls
are distributed at random on the lattice, with the same probability for the two orientations.

0305-4470/97/220785+06$19.50c© 1997 IOP Publishing Ltd L785



L786 Letter to the Editor

Figure 1. (a) Some trajectories of particles on the lattice. Note the two possible orientations of
the walls, which reflect particles on both faces. (b) Four orbits of periodT = 4 which determine
a fifth one (broken).

This configuration is kept fixed along the whole evolution. Figure 1(a) shows a portion of
the system, illustrating some of the possible orbits of a single particle.

Since the total numberNs of phase-space states is finite,Ns = (4N2)P , the system
is necessarily recurrent [4], with a recurrence timeT 6 Ns . Moreover, recurrence cannot
occur to an intermediate state of the previous trajectory—giving rise to a limit cycle—but
has to bring the system to its initial state. Returning to an intermediate state would in
fact imply that such state has (at least) two predecessors, which is in contradiction with
the reversible character of the dynamics. The model is therefore fully periodic and, thus,
cannot exhibit the chaotic evolution typical of Hamiltonian systems [5]. As shown below,
however, it can have orbits whose statistical properties mimic those of chaotic trajectories.
Since the system consists of non-interacting particles, the case of a single particle,P = 1,
will be considered first, discussing then the general case as a straightforward extension.

For a given configuration of the reflecting walls, the set ofNs phase-space states is
divided in disjoint sectors, each corresponding to an orbit of the particle. From any initial
condition in a given sector, the trajectory runs over all the other states before coming back
to the initial point. The one-particle system is therefore not ergodic in a global sense,
but ergodicity does hold inside each sector. This is analogous, in the motion of generic
Hamiltonian systems, to the restriction of the trajectory to the constant energy manifold that
contains the initial condition.

The division of phase space into sectors and the form of the trajectories are expected
to become more and more complex as the number of reflecting walls increases. ForM = 0
the phase space is divided ins0 = 4N sectors, all of them corresponding to trajectories of
period T = N , which is thus the recurrence time of the system. In this case, the model
mimics the Hamiltonian dynamics of a harmonic oscillator, where all the trajectories have
the same period. For small values ofM, 0 < M � N , it can be shown that the number
s of phase-space sectors is lower thans0. A single reflecting wall (M = 1), for instance,
couples the two orbits of periodT = N that intersect each other at the wall site, giving
rise to a new orbit of periodT = 2N . Accordingly, the number of sectors decreases to
s1 = 4N − 2 < s0. On the other hand, forM ≈ N2, the division in sectors is mainly
determined by short-period orbits. The number of phase-space sectors is then expected to
be sN2 ∝ N2. Hence, for sufficiently largeN , sN2 � s0. This shows that the dependence
of the number of sectors on the number of walls should exhibit two regimes. For smallM,
s decreases asM becomes larger, whereas for largeM, s increases with growingM.
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Figure 2. Normalized distribution of the number of sectorss, for N = 100 andM = N2. The
results correspond to averages overr realizations.

Note however that—since, for a given value ofM > 1 there are several non-equivalent
configurations of walls—s is not a well defined function ofM. To characterize the typical
values ofs for fixed M it is then necessary to average over different realizations of the
wall configuration. Figure 2 shows the normalized distribution ofs, p(s), at the maximum
valueM = N2, numerically obtained forr = 103 and 104 realizations, andN = 100. This
bell-shaped distribution, which is observed for allM > 10, suggests we characterizep(s)

by its mean valuēs and its quadratic dispersionδs =
√
(s − s̄)2. According to figure 2,

these two quantities are well defined even by 103 realizations.
Figure 3 displays the results of numerical simulations over 103 realizations for̄s andδs,

with N = 100. The two regimes predicted above are clearly seen, and the transition between
them occurs atM ≈ 700. The behaviour ofδs is more complex, and the relative dispersion
δs/s̄—which is of the order 104 for smallM—attains a maximum in the transition zone.

For this one-particle system, the recurrence time is simply given by the period of
the orbit defined by the initial condition. For a given wall configuration, there is a certain
distribution of periods which has in turn to be averaged over realizations, to produce a period
distributionp(T ). This distribution, obtained from 104 realization, is shown in figure 4 for
N = 100 and various values ofM. The period distribution also shows two clearly defined
regimes. For smallM—precisely, in the region of decreasings̄ (cf figure 3)—p(T ) is
strongly peaked, with sharp spikes atM = nN (n = 1, 2, . . .). The occurrence of these
spikes can be explained noting that, as mentioned above, the presence of a wall couples two
orbits of periodN to give rise to an orbit of period 2N , and so on. In the (log–log) plot
for M = 100, it is clearly seen that the spikes decrease in amplitude following a power law
in n. As M approaches the value at which the number of sectors is minimal, longer orbits
should appear. Note in fact that forM = 300 a spike has appeared just belowTmax= 2N2.
In the region wherēs is minimum, then, practically maximal orbits occur with a rather high
probability. AsM grows further, the peaked distribution develops a background which,
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Figure 3. Mean number of sectors̄s and the corresponding quadratic dispersionδs as a function
of M, for N = 100, averaged over 103 realizations.

Figure 4. Normalized period distribution,p(T ), for N = 100 and several values ofM, averaged
over 104 realizations.

with respect to the spikes, can be considered as a ‘continuous’ distribution—although, of
course, the values ofT are discrete. ForM = 1000, this smooth background dominates
over the spikes, defining the second regime in the behaviour ofp(T ). In this regime, the
distribution shows a clear power-law decay. For the maximal valueM = N2 = 104 (not
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shown in figure 4),p(T ) ∝ T −α with α ≈ 2.16, over a wide interval.
The progressive division of phase space as more and more walls are added—which,

for large M, produces an intricate structure of orbits—is a complex process driven by
two competing effects. For smallM, the process is dominated by the coallescence of
relatively short orbits (T ∼ N ) into larger ones, and the number of sectors decreases. As
M grows, long orbits are in turn fragmented in smaller sectors, whose number increases
consequently. The formation of sectors can therefore be seen as a random sequence where,
due to the branching process of coallescence and fragmentation, strong correlations appear
(cf figure 1(b)). This coallescence-fragmentation mechanism—which is reminiscent of some
well known physical processes that are able to produce power-law distributions [6]—could
provide a clue to an explanation of the shape ofp(T ).

Consider now the case of a many-particle system,P � 1. If in the initial condition the
particles are uniformly distributed over the lattice and their velocities are chosen at random,
the resulting distribution over sectors should be more or less uniform. The evolution of the
system will then be nothing but a superposition of the periodic motions of the particles.
The recurrence time will therefore be given by the least common multiple of the individual
periods. This time is expected to be much shorter in the small-M regime, where all the
periods are multiples ofT = N , than in the large-M range, where many more values ofT
are admissible (cf figure 4).

The dynamics of the many-particle model mimics the evolution of a generic Hamiltonian
system. On one hand, in fact, bounded integrable Hamiltonian systems can be reduced to a
superposition of a discrete set of periodic motions [1, 5]. On the other, chaotic Hamiltonian
systems are a superposition of periodic motions over a continuous set of periods [7].
Then, the model represents regular Hamiltonian dynamics for smallM, where the period
distribution is strongly peaked, and chaotic motion in the regime of largeM, where the
period distribution is ‘continuous’, in the sense discussed above. The two regimes observed
in the behaviour of this model can thus be interpreted in terms of very generic properties
of Hamiltonian systems.

From an alternative viewpoint, the model can be seen as a reversible inhomogeneous
cellular automaton in phase space [8]. Topics such as ergodicity breaking and recurrence
times have been studied in certain detail for other cellular automata, both abstractly and
as models of real systems [4]. Some of the previous results—in particular, referring to
period distributions [9]—are similar to the ones presented here. As a cellular automaton,
the present model is a particularly intuitive representation of a Hamiltonian system. It would
admit extension, for instance, to more dimensions, or to consider more complex collision
laws. Remaining open problems, such as the origin of power-law distributions, provide a
subject for further investigation.
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